Цель курса: обобщить и систематизировать знания учащихся по всем разделам математики с 5 по 9 классы, подготовить к успешной сдаче экзамена.
Задачи курса:
• Формировать общие умения и навыки по решению задач и
поиску этих решений;
• Развивать логическое мышление учащихся;
• Оказать помощь в подготовке к сдаче ГИА;
• Дать возможность проанализировать свои способности;
• Формировать навыки исследовательской деятельности;
• Воспитывать целеустремлённость и настойчивость при решении задач.
Методы и формы обучения
Для работы с учащимися используются следующие формы работы: лекции, практические работы, тестирование, выступления с докладами: «защита решения», «вывод формул», «доказательство теорем».
Задания направлены на проверку таких качеств математической подготовки выпускников, как:
• уверенное владение формально-оперативным алгебраическим аппаратом;
• умение решить планиметрическую задачу, применяя различные теоретические знания курса геометрии;
• умение решить комплексную задачу, включающую в себя знания из разных тем курса;
• умение математически грамотно и ясно записать решение, приводя при этом необходимые пояснения и обоснования;
• владение широким спектром приемов и способов рассуждений.
Планируемые результаты освоения курса
Личностные
1. способность к эмоциональному восприятию математических объектов, рассуждений, решений задач, рассматриваемых проблем;
2. умение строить речевые конструкции (устные и письменные) с использованием изученной терминологии и символики, понимать смысл поставленной задачи. Осуществлять перевод с естественного языка на математический и наоборот.
Метапредметные
1. умение планировать свою деятельность при решении учебных математических задач, видеть различные стратегии решения задач, осознанно выбирать способ решения;
2. умение работать с учебным математическим текстом (находить ответы на поставленные вопросы, выделять смысловые фрагменты);
3. умение проводить несложные доказательные рассуждения, опираясь на изученные определения, свойства, признаки; распознавать верные и неверные утверждения; иллюстрировать примерами изученные понятия и факты; опровергать с помощью контрпримеров неверные утверждения;
4. умение действовать в соответствии с предложенным алгоритмом, составлять несложные алгоритмы вычислений и построений;
5. применение приёмов самоконтроля при решении учебных задач;
6. умение видеть математическую задачу в несложных практических ситуациях.
Предметные
1. владение базовым понятийным аппаратом по основным разделам содержания;
2. владение навыками вычислений с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
3. умение решать текстовые задачи арифметическим способом, используя различные стратегии и способы рассуждения;
4. усвоение на наглядном уровне знаний о свойствах плоских и пространственных фигур; приобретение навыков их изображения; умение использовать геометрический язык для описания предметов окружающего мира;
5. приобретение опыта измерения длин отрезков, величин углов, вычисления площадей и объёмов; понимание идеи измерение длин площадей, объёмов;
6. знакомство с идеями равенства фигур, симметрии; умение распознавать и изображать равные и симметричные фигуры;
7. умение проводить несложные практические расчёты (включающие вычисления с процентами, выполнение необходимых измерений, использование прикидки и оценки);
8. использование букв для записи общих утверждений, формул, выражений, уравнений; умение оперировать понятием «буквенное выражение», осуществлять элементарную деятельность, связанную с понятием «уравнение»;
9. выполнение стандартных процедур на координатной плоскости;
10. понимание и использование информации, представленной в форме таблиц, столбчатой и круговой диаграммы;
11. умение решать простейшие комбинаторные задачи перебором возможных вариантов.
12. вычислительные навыки: умение применять вычислительные навыки при решении практических задач, бытовых, кулинарных и других расчетах.
13. геометрические навыки: умение рассчитать площадь, периметр при решении практических задач на составление сметы на ремонт помещений, задачи связанные с дизайном.
14. анализировать и осмысливать текст задачи; моделировать условие с помощью схем, рисунков; строить логическую цепочку рассуждений; критически оценивать полученный ответ;
15. решать задачи из реальной практики, используя при необходимости калькулятор;
16. извлекать необходимую информацию из текста, осуществлять самоконтроль;
17 извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным;
18. выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ;
19. строить речевые конструкции;
20. изображать геометрические фигура с помощью инструментов и от руки, на клетчатой бумаге, вычислять площади фигур, уметь выполнять расчеты по ремонту квартиры, комнаты, участка земли и др.;
21. выполнять вычисления с реальными данными;
22. проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты.
В связи с тем, что некоторые обучающиеся не подтвердили свои годовые оценки в ВПР, целесообразно откорректировать содержание и тематическое планирование курса «Реальная математика» с целью повторения и закрепления материала, устранения пробелов в знаниях обучающихся.
Содержание программы
1. Введение (2 ч)
2. Числа и вычисления (2 ч)
Числа: натуральные, рациональные, иррациональные. Соответствия между числами и координатами на координатном луче. Сравнение чисел. Стандартная запись чисел. Сравнение квадратных корней и рациональных чисел. Понятие процента. Текстовые задачи на проценты, дроби, отношения, пропорциональность. Округление чисел.
3. Алгебраические выражения (2 ч)
Выражения, тождества. Область определения выражений. Составление буквенных выражений, по задачам или по чертежам. Одночлены. Многочлены. Действия с одночленами и многочленами. Формулы сокращенного умножения. Разложение многочленов на множители. Сокращение алгебраических дробей. Преобразование числовых выражений, содержащих квадратные корни. Степень с целым показателем и их свойства. Корень n-ой степени, степень с рациональным показателем и их свойства.
4. Уравнения, системы уравнений. (3 ч)
Уравнения с одной переменной. Квадратные уравнения. Неполное квадратное уравнение. Теорема Виета о корнях уравнения. Исследование квадратных уравнений. Дробно-рациональные уравнения. Уравнения с двумя переменными. Системы уравнений. Методы решения систем уравнений: подстановки, метод сложения, графический метод. Задачи, решаемые с помощью уравнений или систем уравнений.
5.Неравенства, системы неравенств (3 ч)
Неравенства с одной переменной. Системы неравенств. Множество решений квадратного неравенства. Методы решения неравенств и систем неравенств: метод интервалов, графический метод.
6.Функции и графики (5 ч)
Понятие функции. Функция и аргумент. Область определения функции.
Область значений функции. График функции. Нули функции. Функция,
возрастающая на отрезке. Функция, убывающая на отрезке. Линейная
функция и ее свойства. График линейной функции. Угловой коэффициент
функции. Обратно пропорциональная функция и ее свойства. Квадратичная
функция и ее свойства. График квадратичной функции. Степенная функция. Четная, нечетная функция. Свойства четной и нечетной степенных функций.
Графики степенных функций. Максимальное и минимальное значение. Чтение графиков функций. Особенности расположения в координатной плоскости графиков некоторых функций в зависимости от значения параметров, входящих в формулы. Зависимость между величинами.
7. Текстовые задачи (2 ч)
Задачи на проценты, задачи на движение, задачи на вычисление объема работы, задачи на процентное содержание веществ в сплавах, смесях и растворах, способы их решения.
8. Треугольники (4 ч)
Высота, медиана, средняя линия треугольника. Равнобедренный и
равносторонний треугольники. Признаки равенства и подобия
треугольников. Решение треугольников. Сумма углов треугольника.
Свойства прямоугольных треугольников. Теорема Пифагора. Теорема
синусов и косинусов. Неравенство треугольников. Площадь треугольника.
9. Многоугольники (2 ч)
Виды многоугольников. Параллелограмм, его свойства и признаки.
Площадь параллелограмма. Ромб, прямоугольник, квадрат. Трапеция.
Средняя линия трапеции. Площадь трапеции. Правильные многоугольники.
10. Окружность (4 ч)
Касательная к окружности и ее свойства. Центральный и вписанный углы.
Окружность, описанная около треугольника. Окружность, вписанная в
треугольник. Свойства описанного и вписанного четырехугольника. Длина окружности. Площадь круга.
11. Прогрессии: арифметическая и геометрическая (2 ч)
Числовые последовательности. Арифметическая прогрессия Разность
арифметической прогрессии. Формула n-ого члена арифметической
прогрессии. Формула суммы n членов арифметической прогрессии.
Геометрическая прогрессия. Знаменатель геометрической прогрессии.
Формула n-ого члена геометрической прогрессии. Формула суммы n членов
геометрической прогрессии. Сумма бесконечной геометрической прогрессии.
12. Решение тренировочных вариантов ОГЭ (2 ч)
13.*Решение задач, проверяющих способность учащихся разбираться в нетипичной ситуации. (1 ч)
|